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Linear dynamics of a sandwich beam (a plate of sandwich composition in
one-dimensional cylindrical bending) bearing concentrated masses and supported by springs
is described in the framework of the sixth order theory of multilayered plates. Analysis of the
in#uence of a single inclusion and of a pair of identical inclusion upon vibrations of an
in"nitely long beam is performed by the use of the Green function method. To construct the
Green functions, a dispersion polynomial is derived and normal modes are obtained.
Parameters of propagating low-frequency waves are checked against results available in the
literature. Then the Green functions for #exural and shear vibrations of a beam excited by
a point force or a point shear moment are considered. Attention is focused on a comparison
of forced vibrations of homogeneous beams and beams bearing concentrated masses
supported by springs. The role of interaction of dominant #exural waves with dominant
shear waves near inclusions is discussed. Conditions of localization of #exural waves at these
inhomogeneous are explored in respect of excitation parameters and parameters of
sandwich composition. Radiated acoustic power is computed in the case of a homogeneous
beam and in a trapped mode case to illustrate the importance of the localization e!ect for
structural acoustics.
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1. INTRODUCTION

In the literature on linear dynamics of thin-walled structures, much attention has been
paid to the interaction of #exural propagating waves with inhomogeneities such as
concentrated masses or sti!eners [1, 2], and it has been shown that this interaction may
generate intense vibrations near such an inclusion. This e!ect is analogous to the
well-known phenomenon of mode trapping in acoustical waveguides, which has been
thoroughly studied [3, 4]. However, in &&elastic waveguides'' like thin-walled plates and
shells, similar e!ects are more complicated because wave propagation is governed by
di!erential operators of order higher than those in acoustical waveguides, so that the
interaction of waves of various types may be involved in the localization of vibrations in
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elastic waveguides. In the case of a simple Kirchho! beam or plate model, a travelling
#exural wave generates an evanescent wave at an inhomogeneity [5], while in reference [6]
similar e!ects have been discussed for the case of T-joint beams (plates) when a pure
longitudinal wave propagating in one member interacts with #exural waves in other
members. In the case of Kirchho! shell theory, the same phenomena of wave interaction has
been analyzed in reference [7] for a cylindrical shell, with emphasis placed on the
interaction of dominantly tangential and dominantly #exural waves.

In all the above-mentioned cases, inhomogeneities produce the e!ect of localized
ampli"cation of #exural vibrations (mode trapping), and in terms of structural acoustics this
provides the possibility of intense sound radiation from this part of a structure. The classical
formulation of the trapped mode problem is relevant to an interaction between inclusions
and a travelling incident wave coming from in"nity, but from the practical viewpoint it is
probably more relevant to specify excitation conditions in terms of external loading. A case
of most interest is then the forced vibrations of an in"nitely long beam loaded by
a concentrated force or moment and bearing concentrated inclusions. Then the Green
function method [8] appears to be a convenient tool for solving this problem. This method
is especially e$cient when the Green function is available in a simple analytical form, as is
the case for our sandwich plate theory.

The model of #at sandwich beam (or plate) is probably the simplest one which permits
interaction between #exural and tangential waves similar to that observed in thin shells. In
this case, dominantly tangential motion is associated with shear deformation generated by
an in-plane &&sliding'' of the skins. This degree of freedom is independent of the lateral
de#ection, w, of the whole structure, and it is speci"ed by an additional variable*the shear
angle h. At inhomogeneities such as concentrated masses or sti!eners, the shear wave
produces conventional, predominantly bending, waves (similar to those existing in
a Kirchho! beam) and therefore amplitudes of lateral displacement increase.

There are many publications devoted to the derivation of theories of sandwich plates (see,
for example, reference [9}14]) and to the analysis of their dynamical properties [15, 16]. It
is not the goal of this paper to go into a detailed comparison of these theories, some of which
are of rather high order and therefore predict the existence of a large number of various
waves. However, as is well known, contributions to structural dynamics from the high order
e!ects manifest themselves mostly at rather high frequencies: i.e., when a structural
wavelength becomes of the same scale as the thickness of a core ply. In the present paper,
attention is focused on the comparatively low-frequency range, with special reference to
long travelling waves. Then governing equations of the sixth order [12, 13] can
appropriately be adopted for a beam of sandwich composition.

Excitation of an in"nitely long elastic waveguide bearing several concentrated masses or
supported by several sti!eners may result in mode trapping between these inclusions; see
a detailed analysis in reference [5]. (In particular, localization of #exural vibrations of
membranes on an elastic foundation driven by transverse loading has been analyzed in
reference [17].) In this paper, we show that the same phenomenon of trapping of #exural
wave may occur for a sandwich beam both under transverse and shear excitation
conditions.

2. THE SANDWICH BEAM MODEL

The theory of a sandwich beam is taken in the form suggested in reference [12]. An
element of sandwich beam in its initial and deformed positions is shown in Figure 1(a). It
consists of two symmetrical relatively thin, sti! skin plies and a thick, soft core ply.



Figure 1. (a) An element of a sandwich beam in non-deformed and deformed positions: (b) shear deformation of
a sandwich beam; (c) normal bending stresses in skin and core plies producing bending moment of the &&"rst kind'':
(d) normal membrane stresses in skin plies producing bending moment of the &&second kind''.
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Dimensionless parameters are introduced to describe the internal structure of the sandwich
plate: e"h

skin
/h

core
as a thickness parameter (the ratio of the thickness of each individual

skin ply to the thickness of the core ply), d"o
core

/o
skin

as a density parameter, c"E
core

/E
skin

as a longitudinal sti!ness parameter and cg"G
core

/G
skin

as a shear sti!ness parameter.
Hereafter, subscripts denoting parameters of skin plies are omitted. The deformation of
a sandwich beam element is governed by two independent variables: displacement of the
mid-surface of the whole element w (which is the same for all plies), see Figure 1(a), and the
shear angle between mid-surfaces of skin plies h, see Figures 1(a) and 1(b) plotted for a case
of pure shear deformation (w"0).

The Hamiltonian of a vibrating composite beam (a plate undergoing cylindrical bending)
in the absence of external forcing is

H"

1

2 P
t
2

t
1
P

l

0

[m(wR )2#I
1
(wR @)2#I

2
hQ 2!D

1
i2
1
!Cq2] dxdt. (1a)

Here the "rst term m(wR )2 is the sum of the kinetic energies of all plies in their vertical motion,
while the second and the third terms correspond to rotation; the term I

1
(wR @)2 is the sum of

the rotational kinetic energies of all plies in their rotations about their own axes, and the
term I

2
(hQ )2 is the rotational kinetic energy generated by sliding (tangential motion) of skin

plies. The potential energy terms correspond to the energy of bending of each ply related to
the curvature of the overall bending, the energy of membrane deformation in skin plies
generated by shear angle and the energy of longitudinal shear deformation in a core ply
respectively.
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The elastic parameters in equation (1a) are [12]
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Here, E"E
skin

, h"h
skin

, and the Poisson ratio l is assumed to be the same for all plies. The
moments and forces are related to lateral displacement and shear angle as [12]

M
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"!D

1
wA, M

2
"D

2
h@, Q"C (h#w@). (1c)

M
1

is a bending moment of the &&"rst kind'', composed as the sum of the bending moments
acting in each ply, and produced by normal stresses linearly distributed in each ply in
accordance with the classic Bernoulli}Euler model applied to each ply individually; see
Figure 1(c). These stresses are related to the curvature i

1
"wA, which is the same for all

plies. M
2

is a bending moment of the &&second kind'', generated by the uniform part of
normal stresses acting in skin plies, see Figure 1(d). These stresses are produced by i

2
"h@.

The shear force Q in the core ply is uniformly distributed, and is proportional to the shear
angle in the core ply q"h#w@.

Stationarity conditions for the functional (1a) are formulated as equations of motion:
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w
, (2a)
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hA#C (h#w@)#I

2
hG"qh . (2b)

Here q
w

is the lateral intensity of distributed force and qh is the distributed intensity of shear
moment.

The boundary conditions are obtained as non-integral terms in integration of the
functional (1a) by parts. They are

D
1
wA"0 or w@"0, (3a)

I
1
wK @#C(h#w@)!D

1
w@@@"0 or w"0, (3b)

D
2
h@"0 or h"0. (3c)

The "rst condition (3a) is related to the bending moment M
1
, composed as the sum of the

bending moments acting in each ply. Alternatively, the overall slope is zero. Condition (3b)
formulates the absence of a transverse force at the edge of a beam. Its "rst term presents
a contribution of rotational inertia (&&Timoshenko''-type term), the second one account for
shear interfacial stresses between plies and the last term corresponds to a standard
Bernoulli}Euler transverse force. The alternative formulation of this boundary condition
implies the absence of lateral displacement at the edge of a beam. The last set of boundary
conditions (3c) is introduced by an independent variable of shear angle h. Either a bending
moment M

2
, generated by the uniform part of normal stresses acting in skin plies, should be

absent or the shear angle is equal to zero.
Typical values of material parameters for skin and core plies are summarized in Tables

1 and 2, after reference [18], chapter 1. The theory of bending of sandwich beams suggested
in references [12, 13] and described here is a generalization of the classic Timoshenko



TABLE 1

¹ypical parameters of skin plies

Density o(kg/m3) Young's modulus E(GPa)

Very sti! skin, Al alloy 2800 80
Sti! skin, 1-D carbon "bre/epoxy 1600 180 (longitudinal/10 (transverse)
Soft skin, 2-D glass weave/polyester 1600 12
Very soft skin, glass mats 1600 8

TABLE 2

¹ypical parameters of core ply

Density o (kg/m3) Shear modulus G (MPa)

&&Soft'' core, PVC 80 31
&&Hard'' core, PVC 200 85
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theory [19]. Thus, a vector of generalized displacements has three components (w, w@, h). In
the case of static deformation, this theory results in equations of equilibrium identical to
those given in reference [20, chapter 3].

3. DISPERSION POLYNOMIAL NORMAL WAVES AND GREEN'S MATRIX
OF THE SANDWICH BEAM

For de"niteness, we consider in some detail the speci"c case of an unloaded sandwich
structure composed of isotropic individual layers, so that c"cg and equations (2a, b)
become
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To construct the Greens functions for vibrations of an in"nitely long sandwich beam it is
necessary to analyze the dispersion relation for waves propagating in an unbounded
structure. The loading in equations (2) are set to zero, and the solution is taken to be of the
form

w"A exp(kx!iut), h"B exp(kx!iut). (5a, b)
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One can now substitute the displacement vector (5) into di!erential equations (4) to
obtain
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and setting the determinant of this system of algebraic equations to zero, one obtains for
c@1 (i.e., for a realistic case when the Young's modulus of the skin ply is much larger than
that of the core) the dispersion polynomial in the form
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where c"JE/o(1!l2).
The results of analysis of the dispersion polynomial (6b) are compared with the solution

of the two-dimensional problem given in reference [15] for a sandwich beam modelled as
three elastic layers of di!erent parameters glued to each other. In this latter paper, the
theory of elasticity is used. Consequently, the dispersion curves are obtained for a broader
class of waves existing in an in"nitely long structure, including the ones relevant to
symmetric (with respect to mid-surface) motions of faces. These waves are not encountered
in the one-dimensional model [12] used in our present paper, as they are relevant to very
high frequencies of excitation. In Figure 2, dispersion curves relevant to propagating waves
Figure 2. The dispersion curves of a sandwich beam. Solid lines after reference [15]; circles the present theory.



TABLE 3

Parameters of a laminated plate

Thickness E o d l
(mm) (N/m2) (kg/m3) (%)

Laminate 5 1)67]1010 1760 2 0)3
Core 50 0)013]1010 130 1)5 0)3
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identi"ed by both theories [15, 12] are presented for the set of parameters of a laminated
plate shown in Table 3, speci"ed in reference [15].

The upper line in Figure 2, reproduced from reference [15], corresponds to the wave
number for dominantly shear waves propagating in a laminate, while the lower line gives
the wave number for its pure bending. Only these kinds of motion are encountered in the
model of sandwich beam suggested here and it is su$cient to describe waves of length larger
than the thickness of a beam. Numerical analysis with the use of equation (6) gives wave
numbers marked by circles in Figure 2. The agreement between results of calculations and
data presented in reference [15] is fairly good. A detailed analysis of the dispersion
polynomial for a sandwich beam is available in references [21, 22], so it is not reproduced
here.

4. NORMAL WAVES AND GREEN'S MATRIX FOR SANDWICH BEAM

In the case of a sandwich beam, a normal mode has two components given by equations
(4a, b), and the ratio of A

n
and B

n
, the coe$cient of a normal mode, can be found for each

root of the dispersion polynomial. This ratio may be obtained from any of two
homogeneous algebraic equations derived from equations (5); for example from the "rst one
we have
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Thus, for each resonant wave number k
n
, a normal wave is de"ned up to #exural amplitude

A
n
that remains undetermined, while the shear amplitude B

n
is given by equation (7). The

dispersion polynomial is bi-cubic in k2, and has three roots; it can easily be shown [21, 22]
that there are travelling and evanescent dominantly #exural normal waves, while the third
normal wave is dominated by shear displacements.

In the low-frequency range, the dominantly shear wave is of an evanescent type, but as
the frequency exceeds a certain threshold value, it becomes a travelling wave. This is
illustrated by the set of graphs in Figure 3(a), displaying the dependence of the wave number
of the propagating shear wave on the frequency parameter for a set of values of the shear
sti!ness parameter c. Thus, in Figure 3(b) the modal coe$cient b is plotted versus frequency
parameter for the same set of c. A decrease in c means that link between skin plies is getting
weaker, resulting in the de-coupling of shear and bending motions of the sandwich beam, so
that a shear wave is produced by simple parallel sliding of faces weakly connected by the
core ply. A decrease in parameter c makes the cut-o! frequency smaller. Simultaneously, the
wave number of the shear wave asymptotically tends to be a linear function of frequency



Figure 3. The in#uence of parameter c on the shape of dispersion curves for propagating shear wave; values for
c from the left to the right: 0)001; 0)005; 0)01; 0)05; 0)1. (b) The in#uence of parameter c on modal coe$cient b for
propagating shear wave; values for c from the left to the right: 0)001; 0)005; 0)01; 0)05; 0)1.
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because the reduced dispersion polynomial for in-plane sliding of the skins (with the
coupling term in equation (4b) neglected) is of the second order. Consequently, the modal
coe$cient becomes small and weakly dependent on frequency.

To perform the analysis of forced vibrations of a sandwich beam, it is convenient to
construct the Greens matrix for an in"nitely long sandwich beam. This matrix is easy to
derive since the roots of the dispersion polynomial and the modal coe$cient are readily
available. The elements of the Green matrix are composed of linear combinations of normal
modes,
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for three distinct loading conditions at the arbitrary point m:

(1) loading by a unit transverse force,
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(2) loading by a unit bending moment,
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(3) loading by a unit shear moment,
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The three roots of the dispersion polynomial (6b) which appear in equations (8a, b, 9a}c) are
selected to satisfy the Sommerfeld radiation conditions at in"nity, so that for j"1, 2, 3
Re(k

j
)(0 or, if Re(k

j
)"0, then Im(k

j
)'0. This latter choice is dictated by our selection of

time dependence as exp(!iut), so as to ensure that the phase velocity of propagating waves
is directed away from a source of excitation. We note that in the presence of mean #ow in
the #uid the connection between mode phase velocity and the radiation condition is
signi"cantly more complicated; see reference [23]. However, in the zero-#ow situation
considered here it is well known that the phase velocity can be used to determine the spatial
location of each mode.

Substitution of equations (8) into each set of equations (9) gives three systems of linear
algebraic equations in A
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for the bending moment case,
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for the shear moment case,
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The solution of these systems uniquely de"nes all the elements of the Green matrix of
vibrations of a sandwich beam. The Green matrix is directly applicable to the analysis of
vibrations of an in"nitely long beam of sandwich composition, as it is formulated with the
Sommerfeld conditions and loading conditions already taken into account.

5. VIBRATIONS OF A SANDWICH BEAM WITH A SINGLE INCLUSION

Consider an in"nitely long sandwich beam bearing at the point x"x
1

a concentrated
mass M supported by a linear spring of sti!ness K; see Figure 4. Assume for simplicity that
this inclusion does not produce inertial forces and moments in response to shear and
rotational displacements and that the spring reacts only to vertical displacement. A driving
generalized force (either a concentrated transverse force or a concentrated shear moment) of



Figure 4. An inclusion in the sandwich beam.
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unit amplitude and frequency u acts at the point x"x
0
. The Green functions relevant to

loading conditions (9a) and (9c) formulate the shape of vibrations of a sandwich beam with
no inclusion driven by a transverse force and by a shear moment respectively.

To account for the interaction between the beam and an inclusion it is necessary to
formulate the equation of motion of the concentrated mass as

!Mu2w
M
"R!Kw

M
. (10)

Here w
M

is the displacement of the concentrated mass, R is the vertical force acting on the
mass from the beam, and only stationary vibrations with circular frequency u are
considered.

Using the Green matrix, the amplitude of the displacements of the beam is given by
applying the superposition principle

w (x)"F
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In equation (11), F
0n
"1 is a driving concentrated force of unit amplitude for n"1 or

a driving concentrated shear moment for n"3 and it is equally applicable to both these
excitation cases. Thus, functions =

n
, n"1, 3, are the components of the Green matrix

formulating lateral displacement in response to transverse force or shear moment
respectively. Note that the force R acts vertically downwards on the beam, leading to the
minus sign in equation (11).
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and the amplitude of forced vibrations of an in"nitely long sandwich beam with inclusion is
then given by the simple formula
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which in non-dimensional form becomes
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Here X"JK/M is the eigenfrequency of an isolated mass supported by a spring, and
k"M/oh3 is a non-dimensional mass of the attachment. If n"1, then a concentrated force
is applied, and the non-dimensional parameter of a force is f

01
"F

01
/Eh. If n"3, then



Figure 5. The in#uence of the mass parameter upon vibrations of a beam with a single inclusions.
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a concentrated shear moment is applied and the non-dimensional parameter of a moment is
f
03
"F

03
/Eh2.

We now brie#y consider several examples of vibrations of an in"nitely long sandwich
beam bearing a single concentrated inclusion, which are aimed just to demonstrate the e!ect
of interaction of shear waves with an inclusion without carrying out a comprehensive
parametric study. Therefore, sandwich plate composition parameters are selected as
e"0)25, d"0)1, c"0)001 (this combination is typical of an &&average'' sandwich plate), and
the in#uence of changes in values of these parameters upon vibrations of the beam with
a single inclusion is not explored hereafter. Driving conditions are speci"ed as excitation by
a unit shear moment and no other driving force are considered. The driving shear moment
is applied comparatively close to the inclusion at the distance lM"l/h"100. It produces
a propagating wave and the #exural displacement has both the real and the imaginary parts
non-zero (time dependence is selected as exp(!iut)). For brevity, we restrict our
consideration to analysis of dependence of the modulus of the displacement on the
inclusion's characteristics. In Figure 5, a set of curves presents absolute values of the
non-dimensional lateral displacement wN "Dw D/h versus the non-dimensional axial
co-ordinate m"x/l scaled to the distance between a loading point and an inclusion. Thus,
in Figure 5, a shear moment is applied at m"0 and a concentrated mass is placed at m"1.
The sti!ness of the spring is rather light, X/u"10, and the excitation frequency is fairly
low, uh/c"0)001. Curve 1 is plotted for a sandwich beam with no attachment (k"0). The
loading conditions are given by equation (9c), so that there is no displacement at the
excitation point. The discontinuity in the slope of curve 1, at m"0, is explained by di!erent
signs of #exural displacements of the beam to the left and to the right of the shear moment.
Curve 2 is plotted for k"1., and it is not much di!erent from the previous one. Thus, we
conclude that such a light inclusion does not distort wave propagation in the sandwich
beam. However, as the mass increases up to k"5., the shape of vibrations is strongly
in#uenced by this inclusion (see curve 3). Any further increase in inertia contributes less to
the structural response and shape of vibrations since curve 3 at k"5., is closer to curve 4 at
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k"100. than to curve 2 at k"1.. This is clearly seen in Figure 5 for x'0 and it could also
be observed for x(0 at somewhat larger distances from an excitation point.

6. VIBRATIONS OF A SANDWICH BEAM WITH TWO INCLUSIONS

The case considered in the previous section illustrates the in#uence of an isolated
inclusion on forced vibrations of an in"nitely long sandwich beam, but this is not associated
with resonant behaviour typical of the trapped mode e!ect. This e!ect may easily be
recognized in the case of excitation of a structure bearing two concentrated masses each
supported by a spring. It manifests itself at certain resonant frequencies, and this will be
investigated now.

Consider now two identical inclusions of mass M supported by linear springs of the same
sti!ness K placed at points x

1
, x

2
. The distance between these points is denoted as

l"x
2
!x

1
. Similar to the previous case, we assume that these inclusions respond only to

vertical displacements of the beam. Either a driving vertical force or a shear moment of unit
amplitude is applied at the point x

0
. The Green function technique again permits one to

obtain an elementary solution for such a problem. The equation of motion of each mass is
formulated as

!Mu2w
j
"R

j
!Kw

j
, j"1, 2, (15)

while the amplitude of displacements of the beam at an arbitrary point is given by

w (x)"F
0n
=

n
(x, x

0
)!R

1
=

1
(x, x

1
)!R

2
=

1
(x, x

2
) (16)

(see discussion of cases n"1 and n"3 in the previous section).
Continuity conditions at x"x

j
, j"1, 2 give the following system of linear algebraic

equation for the amplitudes of the displacements of the concentrated masses m
j
, j"1, 2:
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Then the shape of forced vibrations of the sandwich beam becomes
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It follows from equations (17) that a beam may perform vibrations between two masses
when the determinant of this system of linear algebraic equations is zero, i.e.,
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A
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exp(k
j
l)B

2
"0. (19)

The resonant frequencies of these modes are detected by zeros of determinant (19). The wave
numbers k

j
, j"1, 2, 3, and the coe$cients A

j
, j"1, 2, 3, are frequency-dependent as

speci"ed by equations (6) and (9) so that this equation may be solved numerically. In
particular, for the selected set of parameters e"0)25, d"0)1, c"0)001, l"l/h"100,
k"10., X/u"1000. the resonant values of frequency parameter uh/c are 0)00105 and
0)0024.

The trapped mode e!ect is easily demonstrated for an in"nitely long sandwich beam
loaded by a concentrated transverse force (n"1) at excitation frequency of uh/c"0)001,
i.e., very close to the "rst resonant frequency found from equation (19). A set of curves in
Figure 6 presents an absolute value of #exural displacement in several excitation conditions.
For convenience, in Figure 6 the axial co-ordinate is scaled to the distance between masses,
m"x/l, so that the masses are positioned at the points m"0 and 1. A force is applied to the
left of the span, at m

0
"!0)5 (curve 1), at the mid-span, m

0
"0)5 (curve 2) and to the right of

the span, at m
0
"2)5 (curve 3). Curve 4 is plotted for the case of a concentrated transverse

force acting at the point m
0
"0)5 of an in"nitely long beam bearing no inclusions. In the

selected part of a homogeneous structure, such a force produces a long #exural wave with
a rather small curvature near the loading point. It is seen from these graphs that resonant
vibrations of a beam between inclusions are generated regardless of the position of the force,
but that the amplitude of vibrations is much larger when the force is applied at the centre of
the beam. Similar to the previous "gure, in Figure 6 an absolute value of amplitude is
shown, so that discontinuities in slope at m

1
"0, m

2
"1 are explained by a change in sign of

amplitude of vibrations between these points and outside the span.
We note that the existence of a trapped #exural mode excited by a transverse loading

illustrated by Figure 6 is not speci"c to a sandwich beam, and may easily be found for
Figure 6. Localization e!ect produced by resonant transverse force.



Figure 7. Localization e!ect in shear resonant excitation conditions.
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a Kirchho! beam model; see, for example reference [5]. However, for beams of sandwich
composition, #exural modes may also be trapped in conditions of shear excitation. This
e!ect is speci"c to their dynamics and is considered hereafter in more detail. In Figure 7, the
shape of vibrations (the absolute value of displacement) of a beam having the same
parameters is presented for loading by shear moment acting at m"!1, excitation
frequency uh/c"0)0024. This is the second resonant frequency of #exural vibrations found
from equation (19). Curve 1 is plotted for the case when the two masses are positioned at
m"0 and 1. The case of a single mass placed at m"0 is illustrated by curve 2. Finally, curve
3 is plotted for a homogeneous beam. Although parameters of sandwich plate composition
and parameters of inclusions are the same, there is a considerable di!erence in scales for
#exural displacement between Figures 6 and 7, which is explained by the di!erence in
excitation conditions. In Figure 6, a resonant transverse force acts at the mid-span of
a beam, whereas in Figure 7, a resonant shear moment is applied outside the span between
inclusions. The latter situation is of particular interest since it is relevant to trapping of an
incident shear wave between inclusions and its transformation into the wave having
signi"cant #exural component in this zone. This case is most important from the acoustical
viewpoint because intense radiation of sound may therefore be produced within the span.
This aspect will be addressed in more detail in section 7. As follows from Figure 7, a single
mass contributes only slightly to the shape of vibrations as compared with a homogeneous
beam, whereas from curve 1 it is clear that vibrations are really trapped between two
masses, in spite of the fact that the excitation moment acts out of the span.

The resonant trapping is strongly controlled by the parameters of the inclusions. This is
illustrated by Figure 8 plotted for the case of resonant excitation of a beam by the shear
moment acting at the centre of the span, m

0
"0)5. The parameters of a sandwich beam are

the same as before, e"0)25, d"0)1, c"0)001, lM"l/h"100. The inertial parameter of
inclusion is k"10., which is held "xed. Curve 1 presents a shape of forced vibrations at
X/u"1000, the excitation frequency is uh/c"0)0024 and resonant trapping is clearly seen.
It should also be noticed that the amplitude of vibrations generated by a unit shear moment
acting at the mid-span is several times bigger than in the case of the same shear moment



Figure 8. The in#uence of the sti!ness parameter of inclusions on mode trapping.

Figure 9. The in#uence of the sti!ness parameter of a sandwich beam on mode trapping.
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acting outside the span, see Figure 7. However, if the sti!ness parameter of the inclusion is
changed from X/u."1000 to X/u."10 (curve 2 in Figure 8) with all other parameters
including excitation frequency unchanged, then the localization e!ect vanishes.
Consequently, the shape of vibrations of the beam with two masses becomes the same as in
the case of a homogeneous beam, the di!erence between curve 2 and the curve plotted for an
homogeneous beam is not seen in Figure 8. The e!ect of localization of motion is also
in#uenced by other parameters, speci"cally, by the sti!ness parameter c. In Figure 9, the set
of parameters is e"0)25, d"0)1, lM"l/h"100, k"10., X/u"1000., uh/c"0)0024.
Curves 1 and 2 are plotted for c"0)001; curves 3 and 4 are plotted for c"0)002.
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Curves 1 and 3 are quite close to each other, and represent the shape of vibrations of an
in"nitely long beam. Curves 2 and 4 are plotted for a beam bearing two masses, and it can
clearly be seen that an increase in sti!ness of the core material results in the elimination of
the trapped mode e!ect. This is explained by a shift in resonant frequency of the trapped
mode from a driven frequency of uh/c"0)0024 for a sandwich beam having c"0)002.

7. RADIATED ACOUSTIC POWER FROM A SANDWICH BEAM IN RESONANT
EXCITATION CONDITIONS

The trapped mode e!ect discussed in the previous section may result in a signi"cant
increase in radiated acoustic power as compared with the sound "eld from a homogeneous
beam. To perform analysis of the acoustic "eld, it is necessary to formulate acoustical
equations and their coupling with the equations of vibrations of the structure. In the present
paper, the dynamics of the structure is described by integral equations, so that it is
consistent and convenient to use the same approach for the acoustical part of the problem.
Since an in"nitely long #at plate in cylindrical bending is considered, the problem in
acoustics is conveniently reduced to the Rayleigh integral [1], which takes into account
continuity conditions at the #uid}structure interface and contains the free space Green
function

p (x, 0)"
io

f
u2

2 P
=

~=

H(1)
0 A

u
c
f

Dx!mDBw(m) dm. (20)

In equation (20), p(x, 0) is the contact acoustic pressure exerted at the #uid}structure
interface and o

f
, c

f
are the #uid undisturbed velocity and the sound speed respectively.

In a coupled formulation of the problem in structural acoustics, the integral equations of
motions of the structure, equation (11) or equation (16) with the contact acoustic pressure
included along with a driving force, should be solved simultaneously with the integral
equation of motion of the acoustic medium (20). Such a formulation is relevant to heavy
#uid loading conditions [24], and as is well known, analyses of the acoustic "eld in
a volume and of the structural response present serious di$culties even in the case of the
simple model of a homogeneous Kirchho! beam. However, the light #uid loading
conditions (when the presence of an acoustic pressure is not essential in the formulation of
structural dynamics) may be considered as a reasonable approximation for su$ciently sti!
beams in contact with a relatively light medium. We explore here such a simpli"ed
formulation in order to estimate the possible increase in acoustic power generated by the
trapped mode e!ect.

The power input from a concentrated force into an in"nitely long plate is distributed
between the energy transported to in"nity through the structure in the form of travelling
bending or/and shear waves and the energy emanating from the beam in the form of
acoustic waves. The latter is formulated as [1]

N"

1

2
ReGP

=

~=

p (x, 0)lN (x) dxH (21a)

with l6 (x)"uMIm[w (x)]#iRe[w (x)]N as a complex conjugate of the beam's velocity. For
a homogeneous Kirchho! beam, a detailed analysis of energy #ows is available, for
example, in reference [24].

In the present paper, our consideration is restricted to approximate estimation of the
contribution made by the trapped mode e!ect to acoustic power radiated from a vibrating
in"nitely long sandwich beam. The results reported in the previous section show that
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outside the span between inclusions the shape of vibrations of a beam is not as di!erent
from that of a uniform beam as it is in the span between inclusions. Therefore, we compare
acoustic power produced in the span of an in"nitely long sandwich beam between
inclusions with acoustic power radiated by the same zone of a homogeneous beam. Namely,
we assume masses to be positioned at x"0, l and the driving force to be applied at x"l/2.
Then we compute an acoustic power generated between points x"0, l with and without
inclusions by the formula

N"

1

2
ReGP

t

0

p(x, 0)lN (x) dxH. (21b)

At the "rst step, a contact pressure is found by substitution of the amplitude of vibrations
(11) or (16) into the Rayleigh integral (20). Then computation of the radiated power is
performed straightforwardly by use of formula (21b). Or course, even in near-resonant
conditions the e!ects of the trapped mode will extend beyond 0)x)l, so that a true
measure of the e!ects on the acoustic power would, in principle, involve integration over all
x in equation (21b). However, for the light #uid loading considered here we argue that these
e!ects are small compared to the acoustic radiation generated by the large-amplitude
motion in 0)x)l, justifying the "nite integration range in equation (21b).

Numerical examples are presented for a beam of sandwich composition speci"ed by
elastic parameters given in reference [15] vibrating in water. In Figure 10, the dependence of
non-dimensional acoustic power NI "N/o

f
hc3

f
radiated from the segment (0, l) of a beam

upon a frequency parameter ul/c is presented. Fluid loading parameters are o
f
/o"0)128,

c
f
/c"0)307. Parameters of the sandwich beam composition are e"0)25, d"0)1,

c"0)001, lM"l/h"100; the inertial parameter of inclusions is k"10., and the excitation by
a transverse concentrated force is considered. Curve 1 is plotted for a homogeneous beam
(with no inclusions) and curves 2 and 3 are plotted for a beam with two inclusions having
sti!ness parameters of X/u"10. and X/u"1000. respectively. As is clearly seen, radiated
Figure 10. Non-dimensional radiated acoustic power versus excitation frequency in the case of unit transverse
driving force acting at the middle of the span.



Figure 11. An acoustic power in dB (scaled by the power radiated from a homogeneous beam) versus excitation
frequency in the case of unit shear moment acting at the middle of a span.
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acoustic power strongly increase when inclusions become su$ciently sti! (curve 3), whereas
weak supports (case 2) do not produce the mode trapping e!ect (as has also been observed
in the previous section) and, hence, do not amplify sound radiation. This peak is reached at
the resonant frequency of a trapped mode reported in the previous section. It is also
remarkable that as the driving frequency deviates from resonance, the localization e!ect
vanishes, and therefore the sound intensity becomes of the same level in all three cases.

In Figure 11, a dependence of radiated acoustic power upon frequency parameter ul/c is
presented in the vicinity of the second resonant frequency. The parameters of sandwich
beam composition are the same as in the previous case. A concentrated shear moment is
applied at the mid-span between inclusions. The radiated acoustic power is presented in dB
with the reference level selected as power radiated from a beam with no attachments,
nJ "10 log(N/N

0
). Curve 1 is plotted for X/u"10., curve 2 is plotted for X/u"1000. There

is a substantial growth in intensity of sound radiation caused by the trapped mode e!ect
around the resonant frequency detected by sending the determinant of equation (19) to zero.
The resonant peak is much bigger in the case of a sti! inclusion than in the case of
a relatively soft one. Outside the near-resonant excitation range there is not much di!erence
between e!ects produced by the inclusion with di!erent sti!ness parameters.

8. CONCLUSIONS

The investigation into stationary vibrations of an in"nitely long sandwich beam bearing
concentrated masses supported by springs has been completed. The governing equations of
motion have been derived by using Hamilton's principle, and a Green matrix for stationary
vibrations of an in"nitely long beam obtained analytically based on the analysis of the
dispersion polynomial. Particular attention has been paid to the possibility of trapping
#exural modes in excitation conditions relevant to the generation of dominantly shear
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waves in homogeneous structures. It has been shown that in the case of vibrations of
a sandwich beam bearing two inclusions, intensive localized #exural vibrations may be
provoked by a concentrated shear moment. Excitation of strong lateral vibrations occurs
when a driving shear moment is applied between inclusions, but the same e!ect is also
observed when a shear moment is acting outside the zone of intensive vibrations. The role of
localization of motion is also explored from the viewpoint of sound radiation intensity. It is
shown that a signi"cant increase in acoustic power radiated from the span of a beam
between inclusions occurs in the mode trapping case.
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